Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Benetti, Tiago
 |
Orientador(a): |
Baptista, Rafael Reimann
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/8337
|
Resumo: |
Heart rate monitoring using Photoplethysmography (PPG) signals acquired from the individuals pulse has become popular due to emergence of numerous low cost wearable devices. However, monitoring during physical activities has obstacles because of the influence of motion artifacts in PPG signals. The objective of this work is to introduce a new algorithm capable of removing motion artifacts and estimating heart rate from pulse PPG signals. Normalized Least Mean Square (NLMS) and Recursive Least Squares (RLS) algorithms are proposed for an adaptive filtering structure that uses acceleration signals as reference to remove motion artifacts. The algorithm uses the Periodogram of the filtered signals to extract their heart rates, which will be used together with a PPG Signal Quality Index to feed the input of a Kalman Filter. Specific heuristics and the Quality Index collaborate so that the Kalman filter provides a heart rate estimate with high accuracy and robustness to measurement uncertainties. The algorithm was validated from the heart rate obtained from Electrocardiography signals and the proposed method with the RLS algorithm presented the best results with an absolute mean error of 1.54 beats per minute (bpm) and standard deviation of 0.62 bpm, recorded for 12 individuals performing a running activity on a treadmill with varying speeds. The results make the performance of the algorithm comparable and even better than several recently developed methods in this field. In addition, the algorithm presented a low computational cost and suitable to the time interval in which the heart rate estimate is performed. Thus, it is expected that this algorithm will improve the obtaining of heart rate in currently available wearable devices. |