Desenvolvimento de um sistema de mensuração e aquisição de dados de uma centrífuga humana

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Albuquerque, Eduardo Possamai lattes
Orientador(a): Russomano, Thais lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Faculdade de Engenharia
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/3049
Resumo: Recent studies show that in flights the crew members suffer with the physiological effects resulting from the gravitational force and its variations. To demonstrate the effects caused by this force, human centrifuges are used in pilot training. With the goal of monitoring and controlling data sent by a human centrifuge, the development of a measurement and data acquisition system was proposed. The centrifuge used in the Project was recently developed at the Microgravity Centre/FENG PUCRS with a low cost budget, being powered by exercise and having good mobility when compared to the other conventional models of centrifuges. The proposed system, which is the central theme of this dissertation, was divided into four stages: capture, transmission, display and storage of the data acquired during tests with the human centrifuge. These data comprise the ones from the centrifuge itself, as well as the ones from the volunteers involved in the tests. The capture and transmission stages are performed by boards developed in the project and transmission software. The other two stages are performed only by software. Each one comprising of: control of physiological data, of data generated by the centrifuge, of video data and environmental data monitoring. This system allows tests performed in the human centrifuge to have more accurate results and to be able to provide greater security for the individual submitted to simulated hypergravity.