Evaluating the performance and improving the usability of parallel and distributed word embedding tools

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Silva, Mateus Lyra da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
HPC
MPI
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/9245
Resumo: A representação de palavras por meio de vetores chamada de Word Embeddings (WE) vem recebendo grande atenção do campo de Processamento de Linguagem natural (NLP). Modelos WE são capazes de expressar similaridades sintáticas e semânticas, bem como relacionamentos e contextos de palavras em um determinado corpus. Apesar de as implementações mais populares de algoritmos de WE apresentarem baixa escalabilidade, existem novas abordagens que aplicam técnicas de High-Performance Computing (HPC). Nesta dissertação é apresentado um estudo interdisciplinar direcionado a utilização de recursos e aspectos de desempenho dos algoritmos de WE encontrados na literatura. Para melhorar a escalabilidade e usabilidade, o presente trabalho propõe uma integração para ambientes de execução locais e remotos, que contém um conjunto das versões mais otimizadas. Usando estas otimizações é possível alcançar um ganho de desempenho médio de 15x para multicores e 105x para multinodes comparado à versão original. Há também uma grande redução no consumo de memória comparado às versões mais populares em Python. Uma vez que o uso apropriado de ambientes de alta performance pode requerer conhecimento especializado de seus usuários, neste trabalho também é proposto um modelo de otimização de parâmetros que utiliza uma rede neural Multilayer Perceptron (MLP) e o algoritmo Simulated Annealing (SA) para sugerir conjuntos de parâmetros que considerem os recursos computacionais, o que pode ser um auxílio para usuários não especialistas no uso de ambientes computacionais de alto desempenho.