Fitting techniques to knowledge discovery through stochastic models

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Assunção, Joaquim Vinicius Carvalho lattes
Orientador(a): Fernandes, Paulo Henrique Lemelle lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Faculdade de Informática
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/7179
Resumo: Modelos estocásticos podem ser úteis para representar de maneira compacta cenários não determinísticos. Além disso, simulações aplicadas em um modelo compacto são mais rápidas e demandam menos recursos computacionais do que técnicas de mineração em grandes volumes de dados. O desafio está na construção desses modelos. A acurácia, juntamente com tempo e a quantidade de recursos usados para ajustar um modelo são fatores chave para sua utilidade. Tratamos aqui de técnicas de aprendizado de máquina para ajustes de estruturas com a propriedade de Markov; especialmente formalismos complexos como Modelos Ocultos de Markov (HMM) e Redes de Automatos Estocásticos (SAN). Quanto a acurácia, levamos em consideração as atuais técnicas de ajuste, e medidas baseadas em verossimilhança. Quanto ao tempo de criação, automatizamos o processo de mapeamento de dados via séries temporais e técnicas de representação. Quanto aos recursos computacionais, usamos séries temporais e técnicas de redução de dimensionalidade, evitando assim, problemas com a explosão do espaço de estados. Tais técnicas são demonstradas em um processo que incorpora uma série de passos comuns para o ajuste de modelos com séries temporais. Algo semelhante ao que o processo de descoberta de conhecimento em banco de dados (KDD) faz; porém, tendo como componente principal, modelos estocásticos.