Caracterização de isolados de Streptomyces spp. provenientes de raízes de Fabaceae como rizobactérias promotoras de crescimento e indutoras de respostas de defesa em soja [Glycine max (L.) Merrill]

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Horstmann, Juliana Lopes lattes
Orientador(a): Santarém, Eliane Romanato lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Biologia Celular e Molecular
Departamento: Faculdade de Biociências
País: Brasil
Palavras-chave em Português:
ISR
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/7467
Resumo: The plant growth promoting rhizobacteria (PGPR) can increase agricultural productivity by promoting growth through production of plant hormones, facilitating the uptake of nutrients and chemicals on the soil, as well as inhibiting plant stress factors. Streptomyces spp. (Stm) are bacteria with great biotechnological potential, because in addition to its growth promotion and plant defense induction, they are also known as great producers of secondary metabolites, including antibiotics and phenazines. Soybean [Glycine max (L) Merrill] is one of the main legume crop grown around the world and Brazil is the second largest producer. Its production is affected by many diseases, among which bacterial pustule caused by the pathogen Xanthomonas axonopodis pv. glycines (Xag). The objective of this project was to evaluate isolates of Streptomyces spp. obtained from the rhizosphere of Fabaceae plants regarding characteristics of PGPR, as well as the modulation capacity of soybean defenses in response to the phytopathogen Xag. Eleven isolates of Streptomyces spp. were screened for PGPR traits by siderophores production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA) and phenazines. For a taxonomic identification and growth evaluation of soybean plants, three isolates were selected for their biochemical characteristics. The growth promoting assay was performed in greenhouse using bacterized seeds with the selected isolate and sterile distilled water was use for the control. Length, fresh and dry weight from shoot and root at 15, 30 and 45 days of cultivation were the evaluated parameters. For evaluation of the induction capacity of defense mechanisms of soybean plants, the isolate that obtained the best performance in the growth promotion test was selected. Seeds of soybeans, from sensitive cultivars and resistant to Xag, were bacterized with the selected Stm isolate and grown under greenhouse conditions. The plants were challenged with Xag 15 days after emergence. The treatments consisted of (a) plants treated with sterile distilled water (absolute control); (b) plants bacterized with Stm CLV45 (Stm45); (c) water-treated and Xag challenged plants; and (d) plants bacterized with StmCLV45 and challenged with Xag (Stm45+Xag). The enzymatic responses related to the defense pathways were evaluated biochemically, by analyzing the activity of phenylalanine ammonia lyase (PAL) and by the production of phenolic compounds at times 0, 24, 48, 72 and 144 hours post infection (hpi) of Xag. The expression of the genes related to the defense in Xag challenged soybean plants was determined by the relative expression of the genes PAL, JAZ, ERF5 and PR1 by qPCR at times 0, 12, 24 and 48 hpi. The results of the biochemical analysis indicated the isolates CLV42, CLV44 and CLV46 as the major producers of siderophores and CLV41, CLV45 and CLV46 isolates with higher ACC deaminase activity. All isolates were able to produce IAA, highlighting the isolate CLV45, which produced 398.53 μg AIA g-1 cell. Phenazine pyocyanin (PYO) was also detected in all isolates, but the same did not occur for the 1-carboxylic acid phenazine (PCA), only produced by CLV41, CLV43 and CLV45. The isolates CLV42, CLV44 and CLV45 were selected for their PGPR characteristics for the growth promotion trial of greenhouse soybean plants and taxonomically characterized as species of the genus Streptomyces. None of the isolates evaluated in the trial caused a growth deficit in soybean plants. The CLV45 isolate significantly promoted the growth of soybean shoots in 36.63%, corroborated by the highest dry mass, 17.97%, in relation to the control group, being selected for soybean defense pathways induction. Expression of PAL gene was moderately enhanced in susceptible Stm45+Xag plants at 12 hpi, followed by increase of PAL enzyme activity from 48 to 144 hpi, although corresponding accumulation of phenolic compounds was not recorded. In the resistant cultivar, the highlighted expression of PAL in Stm45+Xag plants resulted in high activity of this enzyme. Enhanced expression of ERF5 and decrease on JAZ gene at 12 hpi in Stm45+Xag plants from both cultivars suggested that ET and JA play a concert role on induced systemic defense by Streptomyces sp. CLV45 against Xag in soybean.