Utilização de métodos de decomposição empíricos no pré-processamento de dados de ressonância magnética funcional

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Esper, Nathalia Bianchini lattes
Orientador(a): Franco, Alexandre Rosa lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Faculdade de Engenharia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/6961
Resumo: Functional Magnetic Resonance Imaging is a noninvasive technique used to map and explore brain networks through the changes in the oxyhemoglobin concentration that is caused by neural activity. One of the techniques to evaluate and measure these brain funcions is resting-state fMRI, which is indicated to subjects with some degree of neurological impairment since no cognitive task is necessary. The main problem of this exam is that it is more sensitive to noise during scanning - from physiological sources, for example, such as heart beating and breathing. The most common and hardest to correct is noise caused by a subject’s head movement. Given this fact, the objective of this thesis is to study and evaluate the effectiveness of implement empirical decomposition methods in the preprocessing stage of fMRI data. Empirical Mode Decomposition and Empirical Mean Curve Decomposition were the chosen algorithms because of their use in non-stationary and nonlinear signals. Thirty-three children participating in the ACERTA Project were classified in two groups: good readers (14 subjects) and poor readers (19 subjects). These data were submitted to five different preprocessing strategies: two for the usual preprocessing steps using or not the movements censoring; one for the Empirical Mode Decomposition method; and two for the Empirical Mean Curve Decomposition, being that one strategy uses changes proposed in this work in original algorithm. According to statistical analysis, the Empirical Mean Curve Decomposition, both the original and the modified, proved to be a promissing method for noise reduction in real fMRI data.