Achados timpanométricos em neonatos:medidas e interpretações

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Silva, Kilza de Arruda Lyra e
Orientador(a): Novaes, Beatriz Cavalcanti de Albuquerque Caiuby
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica de São Paulo
Programa de Pós-Graduação: Programa de Estudos Pós-Graduados em Fonoaudiologia
Departamento: Fonoaudiologia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede2.pucsp.br/handle/handle/11851
Resumo: Introduction. Early identification and diagnosis of hearing impairment in newborns aim at establishing adequate amplification and intervention, as early as possible, in order to reduce negative consequences in language, individual and social development of the child. Tympanometry is part of a test battery for the diagnosis of hearing losses and is used to differentiate between conductive and sensorineural hearing losses. Before six months of age the results obtained using a probe tone of 226 Hz can be misleading. Therefore many studies have been done assessing the use of a high frequency probe tone of 678 and 1000 Hz aiming at a more valid procedure. Goal. The goal of the present study was to describe and discuss interpretations and measurements obtained in timpanometry of normal hearing neonates, using tone probes of 226, 678 and 1000 Hz. The following aspects were described: tympanometric curve type, Peak Compensated Static Acoustic Admittance (Ytm), Tympanometric Width (TW), Tympanometric Peak Pressure (PPT) and Equivalent Ear Canal Volume (Vea). Method. All subjects had normal otoacoustic emissions and no risk for hearing impairment. The curves were obtained in a quiet room using a middle ear analyzer GSI 33 II with tone probes of 226, 678 and 1000 Hz. All babies were calm or sleeping during the test. Results. 110 neonates were tested with the three tone probes therefore 660 curves were obtained. Age range was 6 to 30 days (58 boys and 52 girls). When a probe tone of 226 Hz was used, single peak curve was observed in 105 (47,7%) ears and double peak was found in 115 (52,3%) ears. Results with a probe tone of 678 Hz, revealed 56 (25,4%) single peak curves, 16 (7,3%) inverted curves (I) and 148 (67,3%) asymmetric (AS). Results with a probe tone of 1000 Hz showed 156 (70,9%) single peak tympanograms, 62 (28,2%) asymmetric and 2 (0,9%) inverted. Among the quantitative measurements analyzed, Vea demonstrated a significant difference in gender with probe tones of 226 Hz. Ytm, was also significantly different by gender with the probe tone of 1000 Hz, larger for the boys. For all the other variables no significant difference was found for ear or gender. When the curves were analyzed using the protocol proposed by Sutton et al (2002), 208 (94,5%) ears were considered normal and 12 (5,5%) abnormal with the probe tone of 678 Hz. For the probe tone of 1000 Hz, 217 (98,6%) ears were considered normal, and just 3 (1,4%) of the tympanograms were classified as abnormal. Conclusion. The tympanometric findings in this study were similar to those described in the literature with prevalence of single peaked curves for the probe tone of 1000 Hz and a similar number of single and double peaked curves with the probe tone of 226 Hz. The quantitative measurements were, in general, in agreement with the literature reviewed. The interpretation of the results with the probe tone of 1000 Hz using the protocol suggested by Sutton et al (2002) was the method that allowed the classification of normal for the greatest percentage of the ears tested suggesting that it can be very useful when neonates are evaluated. Further research with this protocol is suggested.