[en] ARTIFICIAL NEURAL NEYWORKS IN THE VOLTAGE CONTROL OF ELECTRICAL POWER SYSTEMS

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: RENATO TEIXEIRA LIMA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=11488&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=11488&idi=2
http://doi.org/10.17771/PUCRio.acad.11488
Resumo: [pt] O controle das tensões dos diversos barramentos de um sistema elétrico de potência tem como objetivo garantir a qualidade da energia fornecida aos consumidores. As tensões devem respeitar níveis regulamentados pelo governo. Atualmente, no Sistema Elétrico de Potência (SEP) brasileiro, a tarefa do controle de tensão, realizada pelos operadores de tempo real, se baseia nos valores e tendências de diversas variáveis (tensões, potências reativas e ativas, sensibilidade dos equipamentos, dentre outras). Para a formação de um operador nessa tarefa são necessários de um a dois anos, tempo que poderia ser reduzido caso um sistema de apoio à decisão dedicado ao problema de controle de tensão estivesse à disposição durante o treinamento. Entretanto, em virtude do grande número de grandezas a serem analisadas e de suas não linearidades, é necessário uma ferramenta automática de apoio à decisão que seja capaz de tratar intrinsecamente relações não lineares. Deste modo, neste trabalho optou-se por desenvolver um sistema baseado em Redes Neurais Artificiais (RNA) para a confecção do sistema sugerido, com o objetivo de indicar a necessidade de realizar ações de controle de tensão utilizando-se dos recursos ou equipamentos disponíveis. O sistema desenvolvido é composto de três módulos: Pré-processamento; Análise e Classificação do evento; e Pós-processamento. Tal sistema serve para sugerir a manobra de equipamentos mais adequada para o controle de tensão. No estudo de caso, o sistema proposto foi avaliado nos equipamentos de controle de tensão (reatores, capacitores e tapes) constantes no Sistema de Transmissão em 765 kV, responsável pela interligação dos sistemas Sul e Sudeste do Brasil. Utilizando dados obtidos do sistema de aquisição em tempo real, diferentes configurações de RNAs foram testadas. Os melhores resultados foram obtidos com uma estrutura de duas redes neurais por equipamento a ser controlado, apresentando, em média, 80% de acerto em relação às manobras realizadas em tempo real. Em virtude da complexidade do problema, os resultados foram considerados mais do que satisfatórios, indicando a aplicabilidade desta técnica para a realização do sistema desejado.