[en] A QUESTION-ANSWERING CONVERSATIONAL AGENT WITH RECOMMENDATIONS BASED ON A DOMAIN ONTOLOGY

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: JESSICA PALOMA SOUSA CARDOSO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50180&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50180&idi=2
http://doi.org/10.17771/PUCRio.acad.50180
Resumo: [pt] A oferta de serviços por meio de interfaces conversacionais, ou chatbots, tem se tornado cada vez mais popular, com aplicações que variam de aplicativos de bancos e reserva de bilheteria a consultas em um banco de dados. No entanto, dado a quantidade massiva de dados disponível em alguns domínios, o usuário pode ter dificuldade em formular as consultas e recuperar as informações desejadas. Esta dissertação tem como objetivo investigar e avaliar o uso de recomendações na busca de informações numa base de dados de filmes através de chatbots. Neste trabalho, implementamos um chatbot por meio do uso de frameworks e técnicas da área de processamento de linguagem natural (NLP - Natural Language Processing). Para o reconhecimento de entidades e intenções, utilizamos o framework RASA NLU. Para a identificação das relações entre essas entidades, utilizamos as redes Transformers. Além disso, propomos diferentes estratégias para recomendações feitas a partir da ontologia de domínio. Para avaliação deste trabalho, conduzimos um estudo com usuários para avaliar o impacto das recomendações no uso do chatbot e aceitação da tecnologia por meio de um questionário baseado no Technology Acceptance Model (TAM). Por fim, discutimos os resultados do estudo, suas limitações e oportunidades de futuras melhorias.