[pt] MODELOS DE PROGRAMAÇÃO ESTOCÁSTICA COM INCERTEZAS ENDÓGENAS: UMA APLICAÇÃO EM LOGÍSTICA HUMANITÁRIA
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37562&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37562&idi=2 http://doi.org/10.17771/PUCRio.acad.37562 |
Resumo: | [pt] Neste trabalho estudamos uma classe de problemas de otimização estocástica com incertezas endógenas que é formulado como um problema de programação não-linear inteira (MINLP). Esta classe de problemas difere dos problemas de otimização estocástica geralmente estudados na literatura pelo fato de que que a distribuição de probabilidade dos parâmetros aleatórios depende das decisões tomadas. Apesar de discutido dentro do contexto do problema de logística humanitária, a metodologia proposta e os resutados obtidos são válidos para uma classe geral de problemas que agrega uma variedade de aplicações. Em particular, propõe-se (i) uma técnica de convexificação de polinômios de variáveis binárias, (ii) um algoritmo de geração de cortes e (iii) a incorporação dos conceitos de importance sampling dentro do contexto de otimização estocástica de modo a permitir a solução de grandes instâncias do problema. Os resultados computacionais apresentados demonstram as vantagens da metodologia proposta ao permitir a solução de instâncias significativamente maiores que aquelas atualmente apresentadas em trabalhos relacionados. |