[en] A FUZZY INFERENCE SYSTEM WITH AUTOMATIC RULE EXTRACTION FOR GAS PATH DIAGNOSIS OF AVIATION GAS TURBINES
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28405&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28405&idi=2 http://doi.org/10.17771/PUCRio.acad.28405 |
Resumo: | [pt] Turbinas a gás são equipamentos muito complexos e caros. No caso de falha em uma turbina, há obviamente perdas diretas, mas as indiretas são normalmente muito maiores, uma vez que tal equipamento é crítico para a operação de instalações industriais, aviões e veículos pesados. Portanto, é fundamental que turbinas a gás sejam providas com um sistema eficiente de monitoramento e diagnóstico. Isto é especialmente relevante no Brasil, cuja frota de turbinas tem crescido muito nos últimos anos, devido, principalmente, ao aumento do número de usinas termelétricas e ao crescimento da aviação civil. Este trabalho propõe um Sistema de Inferência Fuzzy (SIF) com extração automática de regras para diagnóstico de desempenho de turbinas a gás aeronáuticas. O sistema proposto faz uso de uma abordagem residual – medições da turbina real são comparadas frente a uma referência de turbina saudável – para tratamento dos dados brutos de entrada para os módulos de detecção e isolamento, que, de forma hierárquica, são responsáveis por detectar e isolar falhas em nível de componentes, sensores e atuadores. Como dados reais de falhas em turbinas a gás são de difícil acesso e de obtenção cara, a metodologia é validada frente a uma base de dados de falhas simuladas por um software especialista. Os resultados mostram que o SIF é capaz de detectar e isolar corretamente falhas, além de fornecer interpretabilidade linguística, característica importante no processo de tomada de decisão no contexto de manutenção. |