[pt] SLAM VISUAL EM AMBIENTES DINÂMICOS UTILIZANDO SEGMENTAÇÃO PANÓPTICA

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: GABRIEL FISCHER ABATI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63634&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63634&idi=2
http://doi.org/10.17771/PUCRio.acad.63634
Resumo: [pt] Robôs moveis se tornaram populares nos últimos anos devido a sua capacidade de operar de forma autônoma e performar tarefas que são perigosas, repetitivas ou tediosas para seres humanos. O robô necessita ter um mapa de seus arredores e uma estimativa de sua localização dentro desse mapa para alcançar navegação autônoma. O problema de Localização e Mapeamento Simultâneos (SLAM) está relacionado com a determinação simultânea do mapa e da localização usando medidas de sensores. SLAM visual diz respeito a estimar a localização e o mapa de um robô móvel usando apenas informações visuais capturadas por câmeras. O uso de câmeras para o sensoriamento proporciona uma vantagem significativa, pois permite resolver tarefas de visão computacional que fornecem informações de alto nível sobre a cena, incluindo detecção, segmentação e reconhecimento de objetos. A maioria dos sistemas de SLAM visuais não são robustos a ambientes dinâmicos. Os sistemas que lidam com conteúdo dinâmico normalmente contem com métodos de aprendizado profundo para detectar e filtrar objetos dinâmicos. Existem vários sistemas de SLAM visual na literatura com alta acurácia e desempenho, porem a maioria desses métodos não englobam objetos desconhecidos. Este trabalho apresenta um novo sistema de SLAM visual robusto a ambientes dinâmicos, mesmo na presença de objetos desconhecidos. Este método utiliza segmentação panóptica para filtrar objetos dinâmicos de uma cena durante o processo de estimação de estado. A metodologia proposta é baseada em ORB-SLAM3, um sistema de SLAM estado-da-arte em ambientes estáticos. A implementação foi testada usando dados reais e comparado com diversos sistemas da literatura, incluindo DynaSLAM, DS-SLAM e SaD-SLAM. Além disso, o sistema proposto supera os resultados do ORB-SLAM3 em um conjunto de dados personalizado composto por ambientes dinâmicos e objetos desconhecidos em movimento.