[pt] ESTIMADOR INTELIGENTE DE BIOMASSA EM PASTOS USANDO ÍNDICES DE VEGETAÇÃO A PARTIR DE IMAGENS CAPTURADAS POR VANTS

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: LUCIANA DOS SANTOS NETTO DOS REYS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60132&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60132&idi=2
http://doi.org/10.17771/PUCRio.acad.60132
Resumo: [pt] O gerenciamento correto das pastagens em regiões agropecuárias tem papel fundamental na própria produção, na prevenção ao desperdício da biomassa vegetal e a liberação de gases de efeito estufa (GEE). Além disso, é necessário evitar o movimento inapropriado do rebanho entre pastos, pois este é um processo demorado e pode ser estressante para o animal. O sucesso desta gestão requer uma avaliação eficiente dos recursos da plantação. Os estudos desenvolvidos com esta finalidade tem relação direta com a estimativa da quantidade de biomassa em uma região específica da pastagem, pois, na prática, ela não é realizada de forma precisa, devido à dificuldade de medição em toda a área delimitada. Este trabalho tem como objetivo desenvolver uma metodologia de estimativa de biomassa de baixo custo, baseada em modelos de regressão que correlacionem os atributos de entrada mais relevantes para a aplicação com o real peso da plantação, medido em g/m2 . Para os atributos, foi medida a altura da grama forrageira e calculados os índices de vegetação baseados em RGB a partir de imagens de veículos aéreos não tripulados (VANTs). Como metodologia, utilizou-se regressões lineares, não lineares, redes neurais artificiais baseados em perceptrons de múltiplas camadas e a combinação de todos os modelos gerados (stacking ensemble). Foram alcançados resultados satisfatórios utilizando modelos de redes neurais com ainda duas camadas e com a metodologia de empilhamento de modelos, alcançando um RMSE de 31.76 g/m2 , MAPE de 13.35 por cento e R 2 de 0.9. Portanto, a metodologia proposta pode se tornar uma solução promissora e acessível para a estimativa de biomassa vegetal para uma gestão eficiente e sustentável do rebanho.