[pt] MODELAGEM E SIMULAÇÃO DA DINÂMICA DE BÓIAS DE SUPERFÍCIE ANCORADAS

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: GIL RUDGE CAVALCANTI DE ALBUQUERQUE
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13395&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13395&idi=2
http://doi.org/10.17771/PUCRio.acad.13395
Resumo: [pt] Um método para a simulação dinâmica bi-dimensional de bóias cilíndricas de superfície, sujeitas à ação de ondas e ancorada ao fundo marinho através de uma linha flexível é apresentado neste trabalho. O modelo de elementos finitos adotado por Lustosa (2002) é empregado na descrição do movimento do cabo de ancoragem, onde elementos de vigas de Euler-Bernoulli de dois nós são empregados, com a cinemática do movimento descrita através de grandezas referidas ao sistema local co-rotacionado. No modelo numérico, são consideradas as não-linearidades geométricas resultantes dos grandes deslocamentos da linha e que causam o acoplamento das rigidezes axial e flexional. Na caracterização do movimento da linha consideram-se os seguintes efeitos: peso próprio, empuxo, carregamento hidrodinâmico da correnteza marinha, deslocamentos impostos pela unidade flutuante, forças de inércia e, se presente, a ação de flutuadores. Os deslocamentos do cabo são obtidos da solução do sistema algébrico de equações não-lineares, resultante da integração temporal de Newmark das equações diferenciais temporais do movimento, cuja convergência é garantida através do método iterativo de Newton-Raphson. Para a bóia, considerada para efeito de análise como indeformável, três graus-de-liberdade são considerados: dois de deslocamentos lineares e um de deslocamento angular. As ondas de superfície, monocromáticas e bi-dimensionais, são representadas no modelo através da teoria linear de Airy associada à modificação empírica de Wheeler (Wheeler, 1969). Forças resultantes da ação das ondas sobre a bóia de superfície são obtidas através da integração numérica da equação proposta por Chitrapu et al. (1998) que compõe-se de um termo viscoso - resultante da parcela de arrasto da equação de Morison - e de um termo não-viscoso - considerado como resultante da soma da força de Froude-Krylov (Chakrabarti, 1987) à parcela de inércia da equação de Morison -. A integração numérica desta equação sobre a superfície “molhada” instantânea do cilindro é realizada, a cada incremento de tempo da análise, empregando-se o método da quadratura adaptativa de Simpson. Finalmente, na integração temporal das equações de movimento da bóia de superfície utiliza-se o método de Runge-Kutta de quinta ordem, com o controle adaptável do passo temporal. O procedimento descrito foi implementado em um programa de computador e os resultados obtidos de algumas análises numéricas comparados com os fornecidos por outras simulações independentes, de forma a verificar a adequabilidade da formulação proposta no estudo da dinâmica de bóias flutuantes.