[en] RECOMMENDATION SYSTEMS: AN USER EXPERIENCE ANALYSIS IN DIGITAL PRODUCTS

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: CAROLINA LIMEIRA ALVES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25573&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25573&idi=2
http://doi.org/10.17771/PUCRio.acad.25573
Resumo: [pt] Big Data é o termo utilizado para caracterizar o conjunto de soluções tecnológicas que permitem o rápido processamento de um grande volume de dados variados. Estas soluções só se tornaram possíveis com os avanços tecnológicos ocorridos nas últimas décadas. Uma das funcionalidades que ganharam força e melhorias através desses tipos de tecnologias são os sistemas de recomendação. Tais sistemas têm como objetivo principal oferecer ao usuário sugestões de conteúdo que possam interessá-lo. Este conteúdo pode ser uma notícia, um produto, um contato, um filme, uma música ou qualquer outro tipo de informação. Esta dissertação estuda a percepção dos usuários em relação aos sistemas de recomendação, especialmente para o conteúdo televisivo (programas, séries e filmes). Para tal, fez-se uso de questionários, grupos de foco, análise do cenário atual e estudo de caso. Através destes métodos e técnicas foi possível identificar os diferentes fatores que influenciam a maneira como a funcionalidade é percebida e a forma como os serviços são utilizados. Além disso, se discute as consequências do uso excessivo da personalização de conteúdo, bem como questões éticas, privacidade, impactos sociais e psicológicos e a responsabilidade do designer de produtos digitais. Em conclusão, são feitas recomendações para o desenvolvimento deste tipo de sistema de forma que atenda aos seus objetivos e proporcione uma experiência mais satisfatória ao usuário.