[en] MODEL FOR PREDICTING SHORT-TERM SPEED USING HOLT-WINTERS
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23270&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23270&idi=2 http://doi.org/10.17771/PUCRio.acad.23270 |
Resumo: | [pt] Após o choque de racionamento de energia elétrica, decorrente do desequilíbrio entre oferta e demanda, os vários setores da sociedade brasileira constataram a real e iminente necessidade de diversificação das fontes de geração de energia elétrica e de seu uso racional. Busca-se hoje novas fontes, entre as quais a energia eólica, uma alternativa nova e promissora. A energia eólica está aumentando no mundo todo e o Brasil tem um enorme potencial devido a sua localização geográfica e o governo tem investido neste tipo de energia. O principal objetivo desta dissertação é estudar e desenvolver modelos de previsão de velocidade de vento, de curto prazo da velocidade do vento. Os métodos de amortecimento exponencial, em particular o método de Holt-Winters e suas variações, são apropriados para este contexto devido à sua alta adaptabilidade e robustez. Para aplicação da metodologia considerou-se o município de São João do Cariri (Estado de Paraíba), onde está localizada uma das estações de referência do projeto SONDA (Sistema Nacional de Dados Ambientais para o setor de energia). Será utilizado o método de Holt-Winters, que será comparado com os modelos: de persistência, neuro-fuzzy (ANFIS) e estatísticos. |