[en] ASYMPTOTIC EXPANSIONS APPLIED TO FORCED CONVECTION AT VANISHINGLY SMALL VISCOSITY FOR THE CONSTANT VORTICITY FLOW OVER AN INFINITE WEDGE
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18603&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18603&idi=2 http://doi.org/10.17771/PUCRio.acad.18603 |
Resumo: | [pt] Abreu (1967) estudou o problema do escoamento bi-dimensional viscoso, incomprenssível, com vorticidadade constante, aplicado ao escoamento simético em torno de uma cunha infinita. Este trabalho adorda o problema de Abreu para acaso em que o fluido em escoamento acha-se a uma temperatura constante e a superfície da cunha é não-isotérmica, ocorrendo o surgimento de uma camada limite térmica. Foi aplicado o método das expressões assintóticas acopladas. Existem quatro problemas a serem resolvidos: dois externos e dois internos. A solução desses problemas conduz a solução assintótica do problema para altos valores do número de Reynolds. Foi resolvido o sistema composto pelas equações de Navier-Stokes, continuide e energia. É apresentada a solução geral para semi-ângulos de cunha entre 0 grau e 90 graus, e a solução numérica para casos particulares de semi-ângulos de 0 grau, 18 graus, 72 graus e para valores de Prandtl iguais a 0.7, 1 e 10. |