[en] MACHINE LEARNING TECHNIQUES FOR RESOURCE MANAGEMENT IN MOBILE SELF-ORGANIZING NETWORKS

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: CESAR AUGUSTO SIERRA FRANCO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=52825&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=52825&idi=2
http://doi.org/10.17771/PUCRio.acad.52825
Resumo: [pt] Os sistemas de comunicações móveis atuais vêm enfrentando novos desafios, marcados pelo aumento do uso de novos dispositivos e pela mudança nos padrões de consumo de banda causada pelas aplicações emergentes. É por isso que a indústria de comunicações e a comunidade acadêmica vêm trabalhando tanto nas dificuldades apresentadas nas redes móveis atuais quanto nos desafios técnicos para o desenvolvimento dos esperados sistemas de quinta geração (5G). O grande aumento dos elementos da rede de acesso rádio e a implementação de cenários heterogêneos (macro e pico eNBs, Relay Nodes, etc.) são duas das principais abordagens utilizadas para melhorar a capacidade da rede. No entanto, esse acréscimo de elementos ou, densificação, traz consigo um aumento nos custos e na complexidade nas tarefas de operação e gerenciamento do sistema, já que os novos elementos de rede precisam ser adaptados, configurados e gerenciados continuamente para garantir e aumentar a eficiência da rede, melhorando a qualidade nos serviços oferecidos aos usuários. Este trabalho de pesquisa propõe a inclusão de mecanismos cognitivos, incluindo técnicas de adaptação, nas arquiteturas das redes de acesso móvel. O trabalho propõe igualmente novos mecanismos de auto-organização (Self Organizing Networks, SON) para o balanceamento de carga, empregando modelos dinâmicos capazes de tomar decisões inteligentes e aprender a partir de experiências para atingir os objetivos de desempenho desejados.