[pt] ENSAIOS SOBRE PREVISÃO DE SÉRIES TEMPORAIS HIERÁRQUICAS
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63090&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63090&idi=2 http://doi.org/10.17771/PUCRio.acad.63090 |
Resumo: | [pt] O presente estudo, apresenta um conjunto de propostas metodológicas relacionadas a reconciliação de previsões em Séries Temporais Hierárquicas. O principal objetivo é apresentar soluções originais ao tema, buscando obter previsões mais acuradas do que as obtidas por modelos independentes para os diferentes níveis da hierarquia. Os estudos foram realizados considerando dados reais, mostrando a potencialidade de aplicação dos métodos desenvolvidos em diferentes cenários, onde as series temporais são estruturadas de forma hierárquica. Esta tese é composta por um conjunto de ensaios que exploram a reconciliação de previsão sob a ótica de um modelo de regressão, que dá origem a reconciliação ótima. A primeira contribuição trata do problema da reconciliação de previsões na perspectiva de estimadores robustos. A proposta apresenta uma contribuição original aplicada a dados dos de pesquisas de força de trabalho no Brasil, apresentando um conjunto de soluções que podem direcionar políticas públicas eficientes. Neste caso, as previsões reconciliadas obtidas através de estimadores robustos possibilitaram um maior ganho em termos acurácia e uma performance equivalente aos métodos que representam o estado da arte sobre reconciliação de previsões em séries temporais hierárquicas. A segunda contribuição trata do problema da reconciliação ótima em séries de consumo de energia no Brasil, apresentado uma proposta alternativa, menos sensível a valores estremos. Os resultados obtidos neste segundo trabalho apresentam melhoramentos consideráveis em métricas de avaliação padrão no que diz respeito as novas previsões. Uma terceira proposta busca oferecer uma estrutura alternativa de covariância dos erros de previsão, que irá ampliar o conjunto de propostas apresentadas na literatura para o método de reconciliação denominado por MinT (do inglês, Minimum Trace) , que minimiza os erros de reconciliação, oferecendo um estimador de variância mínima. |