[pt] DINÂMICA ESTOCÁSTICA EFETIVA DE SEQUÊNCIAS PROTEICAS SIMPLIFICADAS

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: CARLOS ENRIQUE OLIVARES RODRIGUEZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23611&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23611&idi=2
http://doi.org/10.17771/PUCRio.acad.23611
Resumo: [pt] As proteínas e outros peptídeos são cadeias de aminoácidos que desempenham funções biológicas específicas dentro de um organismo. A funcionalidade dessas estruturas depende da sua organização tridimensional, portanto é importante determinar quais são os fatores que controlam o bom enovelamento. Se a sequência é conhecida em principio poder-se-ia predizer sua estrutura 3D mediante uma dinâmica molecular de todos os átomos da sequência e das moléculas de água circundantes, mas é claro que esse tipo de simulação é inviável com os recursos computacionais atuais. Alternativamente, consideramos modelos simplificados que levem em conta somente as características principais de cada monômero e das partículas do meio. Efetuamos simulações de dinâmica molecular, considerando interações do tipo Lennard Jones entre monômeros (distinguindo entre monômeros polares e hidrofóbicos) e adicionalmente incorporando uma força estocástica (Langevin) para complementar a influência do meio aquoso. Consideramos diversas sequências lineares, simétricas e de comprimento fixo, evoluindo no espaço bi ou tridimensional. Como resultado destas simulações, podemos descrever a evolução temporal no espaço de conformações mediante variáveis efetivas ou coordenadas de reação, tais como o raio de giro, a distância entre as extremidades ou o número de contatos entre monômeros não ligados. Da análise das séries temporais dessas variáveis efetivas, extraímos os coeficientes que permitem construir seja a equação diferencial estocástica do movimento das variáveis efetivas ou a equação de Fokker-Planck associada. Estas equações para um número reduzido de graus de liberdade permitem, em princípio, obter informações sobre mudanças conformacionais, difíceis de acessar na descrição completa no espaço de fases original, de alta dimensionalidade. Discutimos as vantagens e limitações desta abordagem.