[en] HEALTHCARE STAFF SCHEDULING USING OPTIMIZATION UNDER UNCERTAINTY AND SIMULATION

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: JANAINA FIGUEIRA MARCHESI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=46493&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=46493&idi=2
http://doi.org/10.17771/PUCRio.acad.46493
Resumo: [pt] Nesta tese, abordamos o escalonamento de profissionais de saúde para propor um uso mais eficiente da capacidade existente e fornecer acesso oportuno em diferentes serviços de saúde. Apresentamos um conjunto de problemas relacionados à programação de equipes de saúde. O primeiro problema procura reduzir o tempo de porta-médico em uma unidade de pronto atendimento; o segundo problema visa reduzir o tempo de espera total de tratamento também em uma unidade de pronto atendimento; o terceiro problema visa fornecer acesso oportuno à consulta clínica e à cirurgia em uma unidade cirúrgica especializada. Foram propostos e resolvidos modelos de programação estocástica de dois estágios que procuram representar com precisão as características particulares inerentes a cada problema. Um aspecto importante em problemas de saúde é o grande número de incertezas envolvidas nos processos. A incorporação da incerteza aumenta a complexidade do problema e, portanto, torna-se impossível computacionalmente considerar todos os cenários possíveis. Essa dificuldade é contornada usando a Aproximação por Média Amostral (SAA) para representar a incerteza na demanda. Modelo de simulação de eventos discretos (DES) é usado para representar os problemas. Por fim, as soluções foram aplicadas a estudos de caso reais, mostrando que os modelos propostos são adaptáveis a diferentes prestadores de serviços de saúde. Ao longo da tese, resolvemos com eficiência os modelos utilizando casos reais de hospitais no Brasil e nos EUA.