[en] FAST AND ACCURATE SIMULATION OF DEFORMABLE SOLID DYNAMICS ON COARSE MESHES

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: MATHEUS KERBER VENTURELLI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66793&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66793&idi=2
http://doi.org/10.17771/PUCRio.acad.66793
Resumo: [pt] Esta dissertação introduz um simulador híbrido inovador que combina um resolvedor de Equações Diferenciais Parciais (EDP) numérico de Elementos Finitos (FE) com uma Rede Neural de Passagem de Mensagens (MPNN) para realizar simulações de dinâmicas de sólidos deformáveis em malhas pouco refinadas. Nosso trabalho visa fornecer simulações precisas com um erro comparável ao obtido com malhas mais refinadas em discretizações FE,mantendo a eficiência computacional ao usar um componente MPNN que corrige os erros numéricos associados ao uso de uma malha menos refinada. Avaliamos nosso modelo focando na precisão, capacidade de generalização e velocidade computacional em comparação com um solucionador numérico de referência que usa malhas 64 vezes mais refinadas. Introduzimos um novo conjunto de dados para essa comparação, abrangendo três casos de referência numéricos: (i) deformação livre após um impulso inicial, (ii) alongamento e (iii)torção de sólidos deformáveis. Baseado nos resultados de simulação, o estudo discute as forças e fraquezas do nosso método. O estudo mostra que nosso método corrige em média 95,4 por cento do erro numérico associado à discretização, sendo até 88 vezes mais rápido que o solucionador de referência. Além disso, nosso modelo é totalmente diferenciável em relaçao a funções de custo e pode ser incorporado em uma camada de rede neural, permitindo que seja facilmente estendido por trabalhos futuros. Dados e código estão disponíveis em https://github.com/Kerber31/fast_coarse_FEM para investigações futuras.