[en] KERNEL BASED SHEPARD`S INTERPOLATION METHOD

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: JOANA BECKER PAULO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15709&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15709&idi=2
http://doi.org/10.17771/PUCRio.acad.15709
Resumo: [pt] Muitos problemas reais em modelagem computacional requerem o uso de aproximação de funções. Em alguns casos a função a ser avaliada no computador é muito complexa, portanto seria desejável que ela fosse substituída por uma função mais simples e mais eficiente de ser calculada. Para fazer isso, calcula-se o valor da função escalar f em um conjunto de N pontos {x1, x2, . . . , XN}, onde x(i) (pertence a) R(n), e faz-se uma estimativa dos valores dessa função f em qualquer outro ponto através de um método de interpolação. Um método de interpolação é qualquer procedimento que toma um conjunto de restrições e determina uma boa função que satisfaça essas condições. O método de interpolação de Shepard originalmente calcula o valor estimado dessa função num ponto qualquer x (pertence a) R(N) como uma média ponderada dos valores da função original nas N amostras dadas. Sendo que o peso para cada amostra x(i) é função das potências negativas das distâncias euclidianas entre os pontos x e x(i). Os núcleos K: R(N) × R(N) (EM) R são funções que correspondem ao produto interno no espaço de Hilbert F da imagem dos pontos x e z por uma função phi (conjunto vazio) : R(N) (EM) F, ou seja K(x, z) = < phi (conjunto vazio) (x), phi (conjunto vazio) (z) >. Na prática, as funções núcleos representam implicitamente o mapeamento feito pela função phi (conjunto vazio) , ou seja, se define qual núcleo usar e não qual phi (conjunto vazio) usar. Esse trabalho propõe uma modificação do método de interpolação de Shepard que é uma simples substituição no método original: ao invés de usar a distância euclidiana entre os pontos x e xi sugere-se usar a distância entre as imagens dos pontos x e x(I) por phi (conjunto vazio) no espaço de Hilbert F, que pode ser calculada diretamente com o uso da função núcleo K. Os resultados mostram que essa pequena modificação gera resultados melhores quando comparados com o método de Shepard original.