[pt] IDENTIFICAÇÃO NÃO LINEAR CAIXA-PRETA DE SISTEMAS PIEZOELÉTRICOS

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: MATHEUS PATRICK SOARES BARBOSA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54640&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54640&idi=2
http://doi.org/10.17771/PUCRio.acad.54640
Resumo: [pt] Atuadores baseados em materiais piezelétricos apresentam características ideais para aplicações como transmissão acústica e micromanipulação. No entanto, não-linearidades inerentes a estes atuadores, como histerese e fluência, aumentam o desafio de controla-los. Além disso, a crescente necessidade de atuadores mais precisos e rápidos aliada a frequentes mudanças nas condições ambientais e operacionais agravam ainda mais o problema. Modelagens analíticas são específicas ao sistema ao qual foram feitas, o que significa que elas não são facilmente escalonáveis e eficientes para todos os tipos de sistemas. Adicionalmente, com o aumento da complexidade, os fenômenos que regem a física do sistema não são totalmente conhecidos, tornando difícil o desenvolvimento destes modelos. Este trabalho investiga esses desafios do ponto de vista da metodologia de identificação de sistemas e modelos baseados em dados para atuadores piezelétricos. A abordagem de modelagem caixa preta foi testada com dados experimentais adquiridos em um ambiente de laboratório para os estudos de caso de micromanipulação e transmissão acústica. Sinais de uso geral foram empregados como entrada de excitação do sistema de modo a acelerar a aquisição e estimação dos parâmetros. Parte dos modelos desenvolvidos foram validados com um conjunto de dados separado. Em ambos os casos foi necessário pré-processamento para otimização da quantidade de dados. Os modelos testados incluem a Média Móvel AutoRegressiva com entradas eXógenas (ARMAX), AutoRegressiva Não Linear com entradas eXógenas (NARX) com uma estrutura de rede neural artificial e Média Móvel AutoRegressiva Não Linear com entradas eXógenas (NARMAX). Os resultados mostram uma boa capacidade de prever as não-linearidades do micro manipulador e, portanto, a histerese em diferentes frequências de entrada. O sistema de transmissão acústica foi modelado com sucesso. Embora os resultados mostrem que ainda há espaço para melhorias, eles fornecem informações importantes sobre possíveis otimizações para o sistema uma vez que os modelos apresentados são uteis para janelas de predição curtas.