[en] IMPLICIT METHOD FOR CURVE RECONSTRUCTION FROM SPARSE POINTS

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: SUENI DE SOUZA AROUCA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8188&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8188&idi=2
http://doi.org/10.17771/PUCRio.acad.8188
Resumo: [pt] Nas aplicações em computação gráfica e processamento de imagens, curvas e superfícies implícitas têm sido reconhecidas como a representação mais útil de objetos 2D ou 3D, principalmente porque elas permitem a descrição de formas complexas por uma fórmula. A maioria dos métodos implícitos usam curvas algébricas para aproximar globalmente a fronteira do objeto em uma imagem binária. Quando a forma do objeto é complexa, é comum elevar o grau da curva a fim de obter mais precisão na aproximação. Uma solução alternativa é decompor hierarquicamente o domínio em partes compactas e obter aproximações locais para o objeto em cada parte, e então juntar os pedaços com o objetivo de obter uma descrição global do objeto. O principal objetivo deste trabalho é apresentar um novo método de aproximação de curvas implícitas a partir de pontos esparsos que melhora o estado da arte