[en] USE OF EYE-TRACKING DATA TO MODEL VISUAL BEHAVIOR IN EXPERT SYSTEMS

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: ABNER CARDOSO DA SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60623&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60623&idi=2
http://doi.org/10.17771/PUCRio.acad.60623
Resumo: [pt] O rastreamento ocular (eye-tracking) possibilita rastrear a posição e a direção do olhar de uma pessoa sobre algum tipo de estímulo (e.g., imagens ou vídeos). O uso desta tecnologia permite identificar eventos inerentes à visão humana, que contém informações implícitas capazes de revelar aspectos importantes sobre o comportamento de um indivíduo durante uma determinada tarefa. Porém, identificar essas informações requer um conjunto de habilidades para interpretar os dados de rastreamento ocular e relacioná-los com conhecimentos de domínios específicos. Nesse contexto, pode-se fazer grande proveito de sistemas inteligentes para agregar os conhecimentos e experiências de especialistas junto às respostas do dispositivo de rastreamento ocular. Dessa forma, o objetivo principal deste trabalho é propor uma metodologia para criar sistemas baseados em eye-tracking, para enriquecer o processo de avaliação de um indivíduo frente a uma determinada tarefa, resultando em um modelo para representar o conhecimento dos especialistas sobre aspectos subjetivos, visando automatizar esse processo avaliativo. Portanto, o presente trabalho toma como caso de uso a avaliação da relação entre comportamento visual e eficácia de indivíduos na resolução de testes inspirados em Matrizes Progressivas de Raven. Esses testes são comumente usados na psicologia para medir inteligência e a capacidade de raciocínio abstrato a partir da visualização de imagens. Optamos por utilizar uma abordagem baseada em regras fuzzy, por permitir armazenar conhecimento de forma mais transparente e legível aos usuários finais. As regras do modelo foram desenvolvidas e validadas com o auxílio de um especialista da área da psicologia. O sistema foi testado com dados extraídos de um grupo de usuários e apresentou resultados promissores. Os achados e modelos obtidos nessa pesquisa poderão ser utilizados como alicerce para o desenvolvimento de sistemas mais robustos.