[en] COREFERENCE RESOLUTION FOR THE ENGLISH LANGUAGE

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: ADRIEL GARCIA HERNANDEZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30730&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30730&idi=2
http://doi.org/10.17771/PUCRio.acad.30730
Resumo: [pt] Um dos problemas encontrados nos sistemas de processamento de linguagem natural é a dificuldade em identificar elementos textuais que se referem à mesma entidade. Este fenômeno é chamado de correferência. Resolver esse problema é parte integrante da compreensão do discurso, permitindo que os usuários da linguagem conectem as partes da informação de fala relativas à mesma entidade. Por conseguinte, a resolução de correferência é um importante foco de atenção no processamento da linguagem natural.Apesar da riqueza das pesquisas existentes, o desempenho atual dos sistemas de resolução de correferência ainda não atingiu um nível satisfatório. Neste trabalho, descrevemos um sistema de aprendizado estruturado para resolução de correferências em restrições que explora duas técnicas: árvores de correferência latente e indução automática de atributos guiadas por entropia. A modelagem de árvore latente torna o problema de aprendizagem computacionalmente viável porque incorpora uma estrutura escondida relevante. Além disso, utilizando um método automático de indução de recursos, podemos construir eficientemente modelos não-lineares, usando algoritmos de aprendizado de modelo linear como, por exemplo, o algoritmo de perceptron estruturado e esparso.Nós avaliamos o sistema para textos em inglês, utilizando o conjunto de dados da CoNLL-2012 Shared Task. Para a língua inglesa, nosso sistema obteve um valor de 62.24 por cento no score oficial dessa competição. Este resultado está abaixo do desempenho no estado da arte para esta tarefa que é de 65.73 por cento. No entanto, nossa solução reduz significativamente o tempo de obtenção dos clusters dos documentos, pois, nosso sistema leva 0.35 segundos por documento no conjunto de testes, enquanto no estado da arte, leva 5 segundos para cada um.