[en] EXTRACTION OF COMPUTATIONAL CONTENTS FROM INTUITIONIST PROOFS
Ano de defesa: | 2004 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5443&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5443&idi=2 http://doi.org/10.17771/PUCRio.acad.5443 |
Resumo: | [pt] Garantir que programas são implementados de forma a cumprir uma especificação é uma questão fundamental em computação, por isso, têm sido propostos vários métodos que almejam provar a correção dos programas. Este trabalho apresenta um método, baseado no isomorfismo de Curry-Howard, que extrai conteúdos computacionais de provas intuicionistas, conhecido como síntese construtiva ou proofs-as-programs. É proposto um processo de síntese construtiva de programas, onde a extração do conteúdo computacional gera um programa em linguagem imperativa a partir de uma prova em lógica intuicionista poli-sortida, cujos axiomas definem os tipos abstratos de dados, sendo utilizado como sistema dedutivo a Dedução Natural. Também é apresentada uma prova de correção, bem como uma prova de completude do método atráves do uso de um sistema com regra ômega (computacional) para a aritmética de Heyting, concluindo com uma demonstração da relação entre o uso da indução finita no lugar da regra ômega computacional no processo de síntese. |