[en] EXTRACTION OF COMPUTATIONAL CONTENTS FROM INTUITIONIST PROOFS

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: GEIZA MARIA HAMAZAKI DA SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5443&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5443&idi=2
http://doi.org/10.17771/PUCRio.acad.5443
Resumo: [pt] Garantir que programas são implementados de forma a cumprir uma especificação é uma questão fundamental em computação, por isso, têm sido propostos vários métodos que almejam provar a correção dos programas. Este trabalho apresenta um método, baseado no isomorfismo de Curry-Howard, que extrai conteúdos computacionais de provas intuicionistas, conhecido como síntese construtiva ou proofs-as-programs. É proposto um processo de síntese construtiva de programas, onde a extração do conteúdo computacional gera um programa em linguagem imperativa a partir de uma prova em lógica intuicionista poli-sortida, cujos axiomas definem os tipos abstratos de dados, sendo utilizado como sistema dedutivo a Dedução Natural. Também é apresentada uma prova de correção, bem como uma prova de completude do método atráves do uso de um sistema com regra ômega (computacional) para a aritmética de Heyting, concluindo com uma demonstração da relação entre o uso da indução finita no lugar da regra ômega computacional no processo de síntese.