[pt] HOMOLOGIA DE VARIEDADES ISOESPECTRAIS
Ano de defesa: | 2010 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15309&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15309&idi=2 http://doi.org/10.17771/PUCRio.acad.15309 |
Resumo: | [pt] Para (Lambda) uma matriz diagonal real de espectro simples, consideramse O(Lambda), a variedade de matrizes reais, simétricas conjugadas a (Lambda), e Tau (Lambda), a variedade das matrizes tridiagonais em O(Lambda). Calcula-se as homologias das duas variedades, combinando técnicas de teoria de Morse e sistemas integráveis. Como conseqüência, mostra-se que a imersão de O(Lambda) no espaço vetorial de matrizes reais simétricas é tight e taut, o que tem implicações em teoria espectral numérica. |