[pt] DESVIOS MODERADOS DO NÚMERO DE TRIÂNGULOS EM GRAFOS ALEATÓRIOS ESPARSOS

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: LEONARDO GONCALVES DE OLIVEIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61161&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61161&idi=2
http://doi.org/10.17771/PUCRio.acad.61161
Resumo: [pt] Na primeira parte dessa tese, estudamos o desvio no número de triângulos com respeito à média em ambos os modelos de grafos aleatórios G(n,m) e G(n, p). Focamos no caso em que o grafo aleatório é esparso, no qual a densidade de arestas vai para zero quando o número de vértices cresce para o infinito. Nosso foco também reside no caso de desvios moderados, i.e., aqueles cuja ordem está entre o desvio padrão e a média. Além disso, também derivamos o mesmo tipo de resultado para cerejas (caminhos de comprimento dois). Na segunda parte dessa tese, estudamos a desigualdade de Freedman. Essa desigualdade fornece limitantes para a probabilidade de desvio de um martingal limitado usando sua variância condicional. No nosso trabalho, obtemos uma versão mais forte da desigualdade de Freedman, impondo condições adicionais de simetria nos incrementos do processo martingal.