[pt] ENSAIOS EM MODELOS DE DOIS ESTÁGIOS EM SISTEMAS DE POTÊNCIAS: CONTRIBUIÇÕES EM MODELAGEM E APLICAÇÕES DO MÉTODO DE GERAÇÃO DE LINHAS E COLUNAS

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: ALEXANDRE VELLOSO PEREIRA RODRIGUES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50661&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50661&idi=2
http://doi.org/10.17771/PUCRio.acad.50661
Resumo: [pt] Esta dissertação está estruturada como uma coleção de cinco artigos formatados em capítulos. Os quatro primeiros artigos apresentam contribuições em modelagem e metodológicas para problemas de operação ou investimento em sistemas de potência usando arcabouço de otimização robusta adaptativa e modificações no algoritmo de geração de linhas e colunas (CCGA). O primeiro artigo aborda a programação de curto prazo com restrição de segurança, onde a resposta automática de geradores é considerada. Um modelo robusto de dois estágios é adotado, resultando em complexas instâncias de programação inteira mista, que apresentam variáveis binárias associadas às decisões de primeiro e segundo estágios. Um novo CCGA que explora a estrutura do problema é desenvolvido. O segundo artigo usa redes neurais profundas para aprender o mapeamento das demandas nodais aos pontos de ajuste dos geradores para o problema do primeiro artigo. O CCGA é usados para garantir a viabilidade da solução. Este método resulta em importantes ganhos computacionais em relação ao primeiro artigo. O terceiro artigo propõe uma abordagem adaptativa em dois estágios para um modelo robusto de programação diária no qual o conjunto de incerteza poliedral é caracterizado diretamente a partir dos dados de geração não despachável observados. O problema resultante é afeito ao CCGA. O quarto artigo propõe um modelo de dois estágios adaptativo, robusto em distribuição para expansão de transmissão, incorporando incertezas a longo e curto prazo. Um novo CCGA é desenvolvido para lidar com os subproblemas. Finalmente, sob uma perspectiva diferente e generalista, o quinto artigo investiga a adequação de prêmios de incentivo para promover inovações em aspectos teóricos e computacionais para os desafios de sistemas de potência modernos.