[en] A MULTI-AGENT APPROACH TO DATA MINING PROCESSES: APPLICATIONS TO HEALTH CARE

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: REINIER MOREJON NOVALES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34660&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34660&idi=2
http://doi.org/10.17771/PUCRio.acad.34660
Resumo: [pt] A mineração de dados é um tema em alta que atrai pesquisadores de diferentes áreas, como bancos de dados, aprendizado de máquina e sistemas multiagentes. Como consequência do crescimento do volume de dados, há uma necessidade crescente de obter conhecimento desses grandes conjuntos de dados que são muito difíceis de manipular e processar com os métodos tradicionais. Os agentes de software podem desempenhar um papel significativo ao executar processos de mineração de dados de maneira mais eficiente. Por exemplo, eles podem trabalhar para realizar seleção, extração, pré-processamento e integração de dados, bem como mineração paralela, distribuída ou de múltiplas fontes. Este trabalho propõe uma abordagem (na forma de um framework) que usa agentes de software para gerenciar processos de mineração de dados. Para testar sua aplicabilidade, utilizamos vários conjuntos de dados relacionados ao domínio de saúde, representando alguns cenários de uso (hipotireoidismo, diabetes e arritmia).