[en] ANALYSIS AND DEVELOPMENT OF A STAR-TREE MODEL ESTIMATION SOFTWARE
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=14099&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=14099&idi=2 http://doi.org/10.17771/PUCRio.acad.14099 |
Resumo: | [pt] Na análise de séries temporais, os modelos lineares amplamente difundidos e utilizados, como regressões lineares e modelos auto-regressivos, não são capazes de capturar sua natureza muitas vezes não-linear,oferecendo resultados insatisfatórios. Séries financeiras, por exemplo, apresentam este tipo de comportamento. Ao longo dos últimos anos, houve o surgimento de muitos modelos não lineares para análise de séries temporais, tanto estatísticos como de inteligência computacional, baseados em redes neurais. Esta dissertação se propõe a analisar a performance do modelo STAR-Tree sob diversos cenários de conFiguração, parametrização e metodologias de estimação. Esta classe de modelos subdivide os dados de uma série temporal em regiões distintas que atendem critérios especificados em funções chamadas de pertinências. A cada região é atribuído um modelo linear auto-regressivo. Cada dado estimado pode estar em alguma das regiões com algum grau de pertinência determinado pelas funções fornecidas pelo modelo principal. Fatores como a proximidade das regiões, a suavidade das funções de pertinência e a falta de diversidade nos dados podem dificultar a estimação dos modelos. Para avaliar a qualidade das estimações sob os diversos cenários, foi construído um sistema capaz de gerar séries artificiais, importar séries externas, estimá-las sob a modelagem STAR-Tree, e gerar simulações de Monte Carlo que avaliam a qualidade da estimação de parâmetros e a capacidade de detecção das estruturas de árvore do modelo. Ele foi utilizado como ferramenta para realizar as análises presentes na dissertação, e permitiu que se testassem diferentes conFigurações de métodos e parametrizações com facilidade. |