[pt] ESTRATÉGIAS DE MODELAGEM E OTIMIZAÇÃO APLICADAS AO PROCESSO DE DESLIGNIZAÇÃO DO BAGAÇO DA CANA-DE-AÇÚCAR
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35985&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35985&idi=2 http://doi.org/10.17771/PUCRio.acad.35985 |
Resumo: | [pt] O bagaço da cana-de-açúcar é uma biomassa vegetal que possui muito potencial de uso devido aos seus três elementos estruturais: celulose, hemicelulose e lignina. Para servir como matéria prima na produção de insumos, o bagaço da cana-de-açúcar precisa passar por um processo de pré-tratamento. Nesse estudo, duas metodologias para o processo de pré-tratamento do bagaço da cana-de-açúcar foram utilizadas: a deslignização via peróxido de hidrogênio (H2O2) e via dióxido de carbono supercrítico (ScCO2). Para o estudo utilizando H2O2, foram desenvolvidos modelos a partir de planejamento experimental, Algoritmos Genéticos (GA, do inglês Genetic Algorithms), Redes Neurais Artificiais (RNA) e Neuro-Fuzzy (ANFIS). As variáveis independentes foram temperatura (25 – 60 graus Celsius), concentração de H2O2 (2 – 15 por cento m/v) e pH (10 – 13), tendo como resposta os teores de lignina residual e oxidada no processo, através de análises de FT-IR e análise pelo método de Klason. Para o estudo utilizando ScCO2 foram construídos modelos a partir de RNA e ANFIS. As variáveis estudadas no processo foram: temperatura (35 – 100 graus Celsius), pressão (75- 300 bar) e teor de etanol na solução de co-solvente (0 – 100 graus Celsius). De modo geral, para os dois processos, os modelos desenvolvidos consideram as variáveis independentes como sendo neurônios na camada de entrada e as variáveis dependentes como sendo neurônios na camada de saída. Todos os modelos neurais e ANFIS desenvolvidos neste trabalho foram avaliados pelo coeficiente de correlação e índices de erro (SSE, MSE e RMSE), além do número de parâmetros. Os resultados mostraram que, dentre estas estratégias estudadas, os modelos neurais se mostraram mais satisfatórios para predição das respostas do pré-tratamento com H2O2, já que se encaixa nos índices de performance estipulados. O mesmo ocorreu no modelo neural para predição do teor de lignina residual no pré-tratamento com ScCO2. Para cada modelo polinomial e neural desenvolvido, foi realizada a investigação das superfícies de respostas e das curvas de contorno. Com esse recurso, foi possível a identificação dos melhores pontos operacionais para os processos, visando a minimização dos teores de lignina residual e oxidada na biomassa. |