[pt] FCGAN: CONVOLUÇÕES ESPECTRAIS VIA TRANSFORMADA RÁPIDA DE FOURIER PARA CAMPO RECEPTIVOS DE ABRANGÊNCIA GLOBAL EM REDES ADVERSÁRIAS GENERATIVAS

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: PEDRO HENRIQUE BARROSO GOMES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66801&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66801&idi=2
http://doi.org/10.17771/PUCRio.acad.66801
Resumo: [pt] Esta dissertação propõe a Rede Generativa Adversarial por Convolução Rápida de Fourier (FCGAN). Essa abordagem inovadora utiliza convoluções no domínio da frequência para permitir que a rede opere com um campo receptivo de abrangência global. Devido aos seus campos receptivos pequenos, GANs baseadas em convoluções tradicionais enfrentam dificuldades para capturar padrões estruturais e geométricos. Nosso método utiliza Convoluções Rápidas de Fourier (FFCs), que usam Transformadas de Fourier para operar no domínio espectral, afetando globalmente os canais da imagem. Assim, a FCGAN é capaz de gerar imagens considerando informações de todas as localizações dos mapas de entrada. Essa nova característica da rede pode levar a um desempenho errático e instável. Mostramos que a utilização de normalização espectral e injeções de ruído estabilizam o treinamento adversarial. O uso de convoluções espectrais em redes convolucionais tem sido explorado para tarefas como inpainting e super-resolução de imagens. Este trabalho foca no seu potencial para geração de imagens. Nossos experimentos também sustentam a afirmação que features de Fourier são substitutos de baixo custo operacional para camadas de self-attention, permitindo que a rede aprenda informações globais desde camadas iniciais. Apresentamos resultados qualitativos e quantitativos para demonstrar que a FCGAN proposta obtém resultados comparáveis a abordagens estado-da-arte com profundidade e número de parâmetros semelhantes, alcançando um FID de 18,98 no CIFAR-10 e 38,71 no STL-10 - uma redução de 4,98 e 1,40, respectivamente. Além disso, em maiores dimensões de imagens, o uso de FFCs em vez de self-attention permite batch-sizes com até o dobro do tamanho, e iterações até 26 por cento mais rápidas.