[en] FORECASTING DEMAND FOR LIQUEFIED NATURAL GAS (LNG) IN BRAZILIEN MARKET
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49379&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49379&idi=2 http://doi.org/10.17771/PUCRio.acad.49379 |
Resumo: | [pt] O gás natural liquefeito (GNL) tem importante papel na cadeia de suprimento de gás natural e energia elétrica no país. No Brasil, o produto importado visa prioritariamente o atendimento da demanda termelétrica para este insumo. O modelo de geração termelétrico é flexível e a característica principal deste modelo é a necessidade de se garantir uma oferta de combustível flexível para usinas que deverão suprir uma demanda termelétrica igualmente flexível. O objetivo deste trabalho é modelar e avaliar o desempenho de um modelo causal de regressão dinâmica em previsões de demandas de GNL, de longo prazo, para o atendimento das usinas termo-elétricas a gás natural e comparar a capacidade preditiva com modelos tradicionais univariados, vastamente discutidos na literatura, como o ARIMA e o amortecimento exponencial. Foram estabelecidos cenários da variável explicativa a fim de avaliar como tais cenários influenciam a demanda do GNL. O produto desenvolvido nessa dissertação mostrou a viabilidade dos modelos causais serem utilizados como ferramenta para a simulação da demanda de GNL considerando cenários das variáveis causais What if analysis. |