[pt] MODELO POISSON-GAMA SEMI-PARAMÉTRICO: UMA ABORDAGEM DE PENALIZAÇÃO POR RUGOSIDADE
Ano de defesa: | 2004 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4515&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4515&idi=2 http://doi.org/10.17771/PUCRio.acad.4515 |
Resumo: | [pt] Neste trabalho, os modelos Poisson-gama são estendidos para uma formulação mais geral onde o preditor linear das covariáveis é substituído por um preditor aditivo de funções genéricas destas covariáveis. Como nos modelos aditivos generalizados (MAG), as funções lineares das covariáveis constituem um caso particular de modelo aditivo e as funções suavizadores utilizadas são as splines cúbicas naturais. A formulação semi-paramétrica permite ampliar o campo de aplicação desta classe de modelos. Os modelos semi-paramétricos são estimados por um processo iterativo combinando maximização da verossimilhança e algoritmo backfitting. Todos os algoritmos de estimação e diagnósticos estão implementados nas linguagens de programação R e C. |