[pt] COMPLEXIDADE EM GEOMETRIA EUCLIDIANA PLANA

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: SILVANA MARINI RODRIGUES LOPES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3279&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3279&idi=2
http://doi.org/10.17771/PUCRio.acad.3279
Resumo: [pt] Consideramos duas formas de complexidade em geometria euclidiana plana.Na primeira, problemas são descritos algebricamente, e a complexidade é cotada essencialmente pelo grau de um polinômio. Como consequência, mostramos que vários resultados gerais e familiares em geometria podem ser demonstrados a partir da simples verificação de dois ou três casos particulares. A segunda forma faz uso da descrição sintática dos teoremas, que permite uma quantificação da complexidade em termos lógicos (número de quantificadores e átomos de uma fórmula). Inspirados por esta última abordagem, são descritos alguns procedimentos de demonstração automática. Alguns grupos habituais de operções em geometria são apresentados com a intenção de simplificar as duas abordagens.Através do estudo de técnicas mais avançadas em matemática trazemos novos pontos de vista a assuntos estudados no ensino médio.