[en] NONLINEAR OSCILLATIONS AND DYNAMIC INSTABILITY OF THIN-WALLED BEAMS WITH OPEN CROSS-SECTION
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
MAXWELL
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33893&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33893&idi=2 http://doi.org/10.17771/PUCRio.acad.33893 |
Resumo: | [pt] Estruturas com elementos de seção aberta e paredes delgadas são amplamente utilizados em estruturas metálicas. Estes elementos têm, em geral, baixa rigidez a torção. Para seções monosimétricas e assimétricas, quando o centro de cisalhamento não coincide com o centro de gravidade, pode ocorrer acoplamento entre flexão e torção. Devido à baixa rigidez à torção, podem ocorrer grandes rotações das seções transversais da viga. Assim, uma análise do comportamento de tais elementos estruturais, levando em consideração a não linearidade geométrica, é desejável. Com este objetivo, equações diferenciais parciais de movimento que descrevem o acoplamento flexão-flexão-torção são utilizadas, em conjunto com o método de Galerkin, para se obter um conjunto de equações discretizadas de movimentos, que é resolvido pelo método Runge-Kutta. A partir das equações linearizadas, obtêm-se as frequências naturais, cargas críticas axiais e a relação entre carga axial e frequência para vigas com diferentes condições de contorno. A seguir, estudam-se as oscilações não lineares e bifurcações de uma viga engastada-livre submetida a cargas laterais harmônicas. Uma análise paramétrica detalhada, usando várias ferramentas de dinâmica não linear, investiga o comportamento dinâmico não linear e não planar da viga nas três primeiras regiões de ressonância e a influência da não linearidade, posição do carregamento, restrições à torção e parâmetros de controle do carregamento na estabilidade dinâmica da estrutura. |