[en] A STATISTICAL INVESTIGATION ON TIME SERIES MODELS FOR COUNT DATA: GARMA MODEL AND THE STATE SPACE POISSON GAMMA MODEL

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: MAURO LAWALL EVARISTO CARLOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10009&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10009&idi=2
http://doi.org/10.17771/PUCRio.acad.10009
Resumo: [pt] O presente trabalho tem como objetivo principal investigar por meio de simulação Monte Carlo algumas propriedades estatísticas dos modelos GARMA (Generalized Autoregressive Moving Average) para séries temporais de dados de contagem. Os modelos GARMA são uma extensão dos Modelos Lineares Generalizados de McCullagh e Nelder para situações de dados dependentes, caracterizando-se pela adição de um termo extra ao preditor linear, o qual passa a incorporar termos autoregressivos (AR) e de médias móveis (MA). As propriedades estatísticas investigadas foram às condições de estacionariedade dos modelos GARMA e os critérios de identificação da ordem (p,q) dos polinômios AR e MA que definem o modelo. Os resultados encontrados indicam que os critérios AIC BIC e Hannan-Quin utilizados foram razoavelmente eficazes na identificação da ordem dos modelos e que as condições de estacionariedade estabelecidas empiricamente em termo de restrições no espaço paramétrico são bastante complexas exigindo um estudo mais detalhado. Como objetivo secundário testamos os modelo GARMA em séries reais, ajustando os modelos GARMA- Poissson e GARMA-Binomial Negativa ao número de caso de poliomielite nos EUA e ao número de infartos do miocárdio no município do Rio de Janeiro. Os resultados indicam que os modelos foram capazes de explicar, de forma econômica, a variação destas séries.