[en] ENABLING AUTONOMOUS DATA ANNOTATION: A HUMAN-IN-THE-LOOP REINFORCEMENT LEARNING APPROACH
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61195&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61195&idi=2 http://doi.org/10.17771/PUCRio.acad.61195 |
Resumo: | [pt] As técnicas de aprendizado profundo têm mostrado contribuições significativas em vários campos, incluindo a análise de imagens. A grande maioria dos trabalhos em visão computacional concentra-se em propor e aplicar novos modelos e algoritmos de aprendizado de máquina. Para tarefas de aprendizado supervisionado, o desempenho dessas técnicas depende de uma grande quantidade de dados de treinamento, bem como de dados rotulados. No entanto, a rotulagem é um processo caro e demorado. Uma recente área de exploração são as reduções dos esforços na preparação de dados, deixando-os sem inconsistências, ruídos, para que os modelos atuais possam obter um maior desempenho. Esse novo campo de estudo é chamado de Data-Centric IA. Apresentamos uma nova abordagem baseada em Deep Reinforcement Learning (DRL), cujo trabalho é voltado para a preparação de um conjunto de dados em problemas de detecção de objetos, onde as anotações de caixas delimitadoras são feitas de modo autônomo e econômico. Nossa abordagem consiste na criação de uma metodologia para treinamento de um agente virtual a fim de rotular automaticamente os dados, a partir do auxílio humano como professor desse agente. Implementamos o algoritmo Deep Q-Network para criar o agente virtual e desenvolvemos uma abordagem de aconselhamento para facilitar a comunicação do humano professor com o agente virtual estudante. Para completar nossa implementação, utilizamos o método de aprendizado ativo para selecionar casos onde o agente possui uma maior incerteza, necessitando da intervenção humana no processo de anotação durante o treinamento. Nossa abordagem foi avaliada e comparada com outros métodos de aprendizado por reforço e interação humano-computador, em diversos conjuntos de dados, onde o agente virtual precisou criar novas anotações na forma de caixas delimitadoras. Os resultados mostram que o emprego da nossa metodologia impacta positivamente para obtenção de novas anotações a partir de um conjunto de dados com rótulos escassos, superando métodos existentes. Desse modo, apresentamos a contribuição no campo de Data-Centric IA, com o desenvolvimento de uma metodologia de ensino para criação de uma abordagem autônoma com aconselhamento humano para criar anotações econômicas a partir de anotações escassas. |