[en] A HIERARCHICAL FACTOR MODEL FOR THE JOINT PREDICTION OF CORPORATE BOND YIELDS

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: URSULLA MONTEIRO DA SILVA BELLOTE MACHADO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19535&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19535&idi=2
http://doi.org/10.17771/PUCRio.acad.19535
Resumo: [pt] O objetivo deste trabalho é a construção de um modelo integrado para previsão da estrutura a termo da taxa de juros, referentes a títulos corporativos americanos para diferentes níveis de risco. A metodologia é baseada no modelo de Nelson e Siegel (1987), com extensões propostas por Diebold e Li (2006) e Diebold, Li e Yue (2008). Modelamos a estrutura a termo para 14 níveis de risco e estimamos conjuntamente os fatores latentes de nível e inclinação que governam a dinâmica das taxas, para a posterior estimação de dois super fatores, que por sua vez, conduzem a trajetória de cada fator, onde está centrada a nossa principal inovação. A previsão da curva de juros é então construída a partir da previsão dos super fatores, modelados por processos auto-regressivos, como sugere Diebold e Li (2006). Através dos super fatores extrapolados da amostra reconstruímos, na forma da previsão, os fatores latentes e a própria taxa de juros. Além da previsão fora da amostra, comparamos a eficiência do modelo proposto com o modelo mais tradicional da literatura, o passeio aleatório. Pela comparação, não obtivemos ganhos significativos em relação a esse competidor, principalmente na previsão um passo a frente. Resultados melhores foram obtidos aumentando o horizonte de previsão, mas não sendo capaz de superar o passeio aleatório.