[en] ALGORITHMS FOR PERFORMING THE COMPUTATION OF GOMORY HU CUT-TREES

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: JOAO PAULO DE FREITAS ARAUJO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32393&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32393&idi=2
http://doi.org/10.17771/PUCRio.acad.32393
Resumo: [pt] Calcular o valor do fluxo máximo entre um nó origem e um nó destino em uma rede é um problema clássico no contexto de Fluxos em Redes. Sua extensão, chamada de problema do fluxo máximo multiterminal, consiste em achar os valores dos fluxos máximos entre todos os pares de nós de uma rede não direcionada. Estes problemas possuem diversas aplicações, especialmente nos campos de transporte, logística, telecomunicações e energia. Neste trabalho, apreciamos a recente teoria da análise de sensibilidade, em que se estuda a influência da variação de capacidade de arestas nos fluxos máximos multiterminais, e estendemos a computação dinâmica dos fluxos multiterminais para o caso de mais de uma aresta com capacidade variável. Através dessa teoria, relacionamos também nós de corte e fluxos multiterminais, o que permitiu desenvolver um método competitivo para solucionar o problema do fluxo máximo multiterminal, quando a rede possui nós de corte. Os resultados dos experimentos computacionais conduzidos com o método proposto são apresentados e comparados com os de um algoritmo clássico, fazendo uso de instâncias geradas e outras conhecidas da literatura. Por último, aplicamos a teoria apresentada em um problema de identificação de complexos de proteínas em redes de interação proteína-proteína. Através da generalização de um algoritmo e de um resultado teórico sobre exclusão de cortes mínimos, foi possível reduzir o número de cálculos de fluxo máximo necessários para identificar tais complexos.