[en] FORECAST LOAD MODEL USING NEURAL NETWORK: LAYER BY LAYER IMPROVEMENT
Ano de defesa: | 2005 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7251&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7251&idi=2 http://doi.org/10.17771/PUCRio.acad.7251 |
Resumo: | [pt] Nesta dissertação é desenvolvido um modelo de previsão de energia elétrica de curto prazo (previsão mensal) para o sistema elétrico no Brasil, em especial para as concessionárias dos sistemas interligados, através de um modelo de Redes Neurais que emprega um algoritmo de otimização camada a camada. O objetivo principal deste trabalho consiste em demonstrar que bons resultados preditivos podem ser alcançados com a utilização desse algoritmo para séries de energia elétrica e que esse método poderia fazer parte dos métodos de previsão que compõem o Sistema de Previsão de Carga (PREVCAR) do Operador Nacional do Sistema (ONS) a saber: modelo de Holt & Winters, modelo de Box & Jenkins, modelo de redes Neurais (backpropagation) e modelo de Lógica Fuzzy. |