[pt] ASSIMILAÇÃO DE DADOS INTEGRADA A TÉCNICAS DE TRADUÇÃO IMAGEM-IMAGEM APLICADA A MODELOS DE RESERVATÓRIOS

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: VITOR HESPANHOL CORTES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62983&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62983&idi=2
http://doi.org/10.17771/PUCRio.acad.62983
Resumo: [pt] A incorporação de dados de produção a modelos de reservatórios é uma etapa fundamental para se estimar adequadamente a recuperação de uma jazida de petróleo e, na última década, o método ensemble smoother with multiple data assimilation (ES-MDA) tem se destacado dentre as estratégias disponíveis para realizar tal tarefa. Entretanto, este é um método que apresenta melhores resultados quando os parâmetros a serem ajustados no modelo são caracterizados por uma distribuição de probabilidades próxima à gaussiana, apresentando um desempenho reduzido ao lidar com o ajuste de parâmetros categóricos, como por exemplo as fácies geológicas. Uma proposta para lidar com esse problema é recorrer a redes de aprendizado profundo, em particular redes para tradução imagem-imagem (I2I), valendo-se da analogia existente entre a representação matricial de imagem e a estrutura em malha das propriedades de um modelo de reservatórios. Assim, é possível adaptar a arquitetura de redes I2I disponíveis e treiná-las para, a partir de uma matriz de parâmetros contínuos que serão ajustados pelo método ES-MDA (como porosidade e permeabilidade), gerar a representação matricial do parâmetro categórico correspondente (fácies), de forma similar à tarefa de segmentação semântica no contexto de imagens. Portanto, o parâmetro categórico seria atualizado de maneira indireta pelo método ES-MDA, sendo a sua reconstrução realizada pela rede I2I.