[es] PREVISIÓN DE CARGAS A CORTO PLAZO - UNA EVALUACIÓN DE LA VIABILIDAD DEL USO DE REDES NEURALES
Ano de defesa: | 2001 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1551&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1551&idi=2 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1551&idi=4 http://doi.org/10.17771/PUCRio.acad.1551 |
Resumo: | [pt] A previsão de perfis de carga elétrica (i.e., das séries de cargas a cada hora de um dia) tem sido freqüentemente tentada por meio de modelos baseados em redes neurais. Os resultados conseguidos por estes modelos, contudo, ainda não são considerados inteiramente convincentes. Há duas razões para ceticismo: em primeiro lugar, os modelos sugeridos geralmente se baseiam em redes que parecem ser complexas demais em relação aos dados que pretendem modelar (isto é, estes modelos parecem estar superparametrizados); em segundo lugar, estes modelos geralmente não são bem validados, pois os artigos que os propõem não comparam o desempenho das redes ao de modelos de referência. Nesta tese, examinamos estes dois pontos por meio de revisões críticas da literatura e de simulações, a fim de verificar se é realmente viável a aplicação de redes neurais à previsão de perfis de carga. Nas simulações, construímos modelos bastante complexos de redes e verificamos empiricamente sua validade, pela comparação de seu desempenho preditivo fora da amostra de treino ao desempenho de vários outros modelos de previsão. Os resultados mostram que as redes, mesmo quando muito complexas, conseguem previsões de perfis mais acuradas do que os modelos tradicionais, o que sugere que elas poderão trazer uma grande contribuição para a solução do problema de previsão de cargas. |