[en] ACCELERATED LEARNING AND NEURO-FUZZY CONTROL OF HIGH FREQUENCY SERVO-HYDRAULIC SYSTEMS

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: ELEAZAR CRISTIAN MEJIA SANCHEZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32823&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32823&idi=2
http://doi.org/10.17771/PUCRio.acad.32823
Resumo: [pt] Nesta dissertação foram desenvolvidas técnicas de controle por aprendizado acelerado e Neuro-Fuzzy, aplicadas em um sistema servo-hidráulico para ensaio de fadiga. Este sistema tem o propósito de fazer ensaios em materiais para prever a resistência à fadiga dos materiais. O trabalho envolveu quatro etapas principais: levantamento bibliográfico, desenvolvimento de um controle por aprendizado acelerado, desenvolvimento de um controle por aprendizado Neuro-Fuzzy, e implementação experimental dos modelos de controle por aprendizado proposto em uma máquina de ensaios de materiais. A implementação do controle por aprendizado acelerado foi feita a partir do modelo de controle desenvolvido por Alva, com o objetivo de acelerar o processo de aprendizagem. Esta metodologia consiste em fazer um controle do tipo bang-bang, restringindo a servo-válvula a trabalhar sempre em seus limites extremos de operação, i.e., procurando mantê-la sempre completamente aberta em uma ou outra direção. Para manter a servo-válvula trabalhando em seus limites de seu funcionamento, os instantes ótimos para as reversões são obtidos pelo algoritmo de aprendizado, e armazenados em tabelas específicas para cada tipo de carregamento. Estes pontos de reversão dependem de diversos fatores, como a amplitude e carga média da solicitação, e são influenciados pela dinâmica do sistema. Na metodologia proposta, a lei de aprendizado inclui um termo de momentum que permite acelerar a aprendizagem dos valores das tabelas constantemente durante a execução dos testes, melhorando a resposta a cada evento. O desenvolvimento de um controle por aprendizado Neuro-Fuzzy foi motivado pela necessidade de ter um agente com a capacidade de aprendizado e armazenamento dos pontos ótimos de reversão. Este modelo de controle também consiste na implementação de um controle do tipo bang-bang, trabalhando com a servo-válvula sempre nos seus limites extremos de operação. O instante de reversão é determinado pelo sistema Neuro-Fuzzy, o qual tem como entradas a gama (dobro da amplitude) e o valor mínimo do carregamento solicitado. O processo de aprendizado é feito pelas atualizações dos pesos do sistema Neuro-Fuzzy, baseado nos erros obtidos durante a execução dos testes, melhorando a resposta do sistema a cada evento. A validação experimental dos modelos propostos é feita em uma máquina servohidráulica de ensaios de fadiga. Para este fim, o algoritmo de controle proposto foi implementado em tempo real em um módulo de controle CompactRIO da National Instruments. Os testes efetuados demonstraram a eficiência da metodologia proposta.