[pt] MODELOS E ALGORITMOS PARA O PROBLEMA DA ÁRVORE GERADORA DE CUSTO MÍNIMO COM RESTRIÇÃO DE DIÂMETRO
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9231&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9231&idi=2 http://doi.org/10.17771/PUCRio.acad.9231 |
Resumo: | [pt] Nesta tese são propostos modelos e algoritmos aproximados para o Problema da Árvore Geradora de Custo Mínimo com Restrição de Diâmetro (AGMD). Este problema modela tipicamente aplicações em projetos de redes de computadores onde todos os vértices devem comunicar-se entre si a um custo mínimo, garantindo um certo nível de serviço. Os modelos propostos por Achuthan e Caccetta para o AGMD são reforçados através da introdução de restrições válidas. Uma relaxação lagrangeana é proposta para o modelo de multifluxo básico de Gouveia e Magnanti. Essa relaxação é utilizada para o desenvolvimento de heurísticas lagrangeanas. Adaptações são realizadas nas heurísticas construtivas propostas por Deo e Abdalla, e por Raidl e Julstrom. São propostas ainda quatro estratégias de busca local, uma heurística do tipo GRASP e outra híbrida. São obtidos limites superiores a menos de 2% do ótimo para as classes de instâncias usadas nos trabalhos de Gouveia e Magnanti, e de Santos, Lucena e Ribeiro. Além disto, obteve-se os melhores resultados conhecidos até o presente momento para 11 instâncias de grafos completos usadas por Raidl, Julstrom e Gruber. |