[es] OPTIMIZACIÓN DE FORMA DE MODELOS BIDIMENSIONALES DE ELEMENTOS FINITOS CON COMPORTAMIENTO ELÁSTICO-PLÁSTICO
Ano de defesa: | 2001 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1997&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1997&idi=2 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1997&idi=4 http://doi.org/10.17771/PUCRio.acad.1997 |
Resumo: | [pt] Este trabalho tem por objetivo apresentar um sistema integrado para otimização de forma de estruturas planas que tenham comportamento elasto-plástico. A metodologia implementada propõe uma alternativa à forma conservadora com que tradicionalmente as estruturas têm sido otimizadas, ou seja, admitindo-se que as mesmas possuam comportamento linear elástico. O sistema computacional é denominado integrado pois reúne diversos módulos distintos para o tratamento do problema, como modelagem geométrica, geração de malhas de elementos finitos, análise não-linear da resposta da estrutura, análise de sensibilidade,programação matemática e otimização de estruturas. A geometria do contorno da estrutura plana é definida por meio de curvas (paramétricas)B-splines cúbicas. Estas, por sua vez, são determinadas em função de um conjunto de pontos de interpolação (pontos-chave) e condições de contorno em seus vértices extremos. A correta definição da geometria da estrutura é responsável pelo sucesso do processo de otimização. A resposta da estrutura às solicitações do carregamento externo é avaliada pelo método dos elementos finitos. Para isso, é necessário que o domínio da estrutura seja discretizado. No presente trabalho foi empregado um gerador automático de malhas não estruturadas de elementos finitos isoparamétricos. A configuração de equilíbrio da estrutura é obtida através de um procedimento iterativo/incremental envolvendo o método de Newton-Raphson. Localmente, o equilíbrio é satisfeito pela aplicação de um algoritmo implícito de integração de tensões nos pontos que violarem o critério de plastificação do material. A matriz tangente de rigidez é atualizada a cada iteração da análise e é obtida de forma consistente com o algoritmo de integração das tensões, preservando as características de convergência quadrática assintótica inerentes ao método de Newton- Raphson. No procedimento iterativo de otimização é empregado um algoritmo de programac¸ ão quadrática recursiva que requer a avaliação dos gradientes da função-objetivo e restrições. Para tal, foi implementado um método semi-analítico para a determinação das sensibilidades da resposta estrutural envolvidas nas expressôes dos gradientes citados. O método leva em consideração os efeitos da plastificação ocorrida durante o carregamento da estrutura e é dito -exato- por apresentar imprecisões apenas nos casos em que a magnitude da perturbação da variável é muito pequena, não podendo ser representada corretamente pelo hardware. Os exemplos analisados mostram que a consideração do comportamento elastoplástico da estrutura na otimização de sua forma leva a configurações mais eficientes do que aquelas obtidas admitindo-se a relação linear elástica entre deformações e tensões. |