[en] FORECASTING HOURLY ELECTRICITY LOAD FOR LIGHT

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: ANA PAULA BARBOSA SOBRAL
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7464&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7464&idi=2
http://doi.org/10.17771/PUCRio.acad.7464
Resumo: [pt] Nessa dissertação é desenvolvido um modelo de previsão de curto prazo para cargas horárias empregando informações climáticas. Tal modelo é montado para a companhia de eletricidade LIGHT. O modelo proposto combina diferentes metodologias, são elas: Redes Neurais, Métodos Estatísticos e Lógica Nebulosa. Primeiramente, emprega-se o Mapa Auto-Organizável de Kohonen para identificar as curvas típicas de carga que são incluídas em um modelo de previsão estatística. Com intuito de melhorar o desempenho do modelo em termos do erro de previsão é adicionado, através de Lógica Nebulosa, o efeito da temperatura na carga. Por fim, é montado um procedimento com alguns conceitos de Lógica Nebulosa para identificar o tipo de curva de carga do dia a ser previsto.